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High temperature behavior of a two-parameter deformed quantum group fermion gas
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We discuss a two-parameter deformed quantum group fermion gas wiig(3)Jsymmetry. In order to
obtain the role of the deformation paramet@rg) on the thermodynamics of the system, we calculate several
thermodynamical functions and investigate the high temperature behavior of, g &USfermion gas through
a SY,p(2)-invariant fermionic Hamiltonian. However, the ordinary fermion gas results can be obtained by
applying the limitg=p=1.

DOI: 10.1103/PhysReVvE.65.026140 PACS nuni)er05.30—d

I. INTRODUCTION Il. QUANTUM GROUP SU 4(N) FERMIONS

Quantum groups and quantum algebras are generaliza- The usual fermion oscillators satisfy the following anti-
tions of usual Lie groups and Lie algebras by some particulafommutation refations:

deformation parametef4&]. They have most popularly found G =8,

application in a wide spectrum of research covering formu- REERRS IR

lations of noncommutative geometfg,3], exactly solvable G+ =0, (1)
statistical modelg$4], and two-dimensional conformal field

theories[5]. Furthermore, statistical and thermodynamical g =N, i,j=1,2,...N,

consequences of studyimgdeformed physical systems have

intensively been investigated in the literat{ife-9]. It should ~ wherey; andy;" are the fermionic annihilation and creation
be mentioned that some possible connections between geaperators, respectively, amd| is the fermion number opera-
eralized statistical mechanics and quantum groups have resr. These oscillators are invariant under Sl)(transforma-
cently been developed by some research&€s11]. In the tions. The quantum group analogs of these relations are writ-
framework ofq bosons and similar operators called quonsten as followq15,7):

[12], some considerable investigations have been carried out

for obtaining a possible violation of the Pauli exclusion prin- \p].q_fi =3 _qfleijlq_flxpk, 2
ciple [13] and also a possible relation to anyonic statistics
[14] \III\I,k:_quikl\Pj\I’ij i,j:1,2, e N, (3)

In this paper, our aim is to study the thermodynamical
properties of a fermionic gas having the symmetry of thewhere theN®x N* matrix Ry, [3] is
guantum group Si),(2). To achieve this aim, we simply _ .
consider a fermiorﬁ)ig Hamiltonian invariant under the quan-  Hiiki = S S (1+(q=1)8)+(q—a~ ) &8 6(j —i), .
tum group Si,,(2). This Hamiltonian is constructed from )
the operators generating a two-parameter deformednq the functiond(j—i)=1 for j>i and zero otherwise.
SUyp(2)-covariant fermion algebra that becomes the usuajjnder the linear transformation
fermion algebra in the limig=p=1. We study such a two-
parameter deformed fermion model to investigate its high N
temperaturglow density behavior, namely, for=ef*<1, W= TV, ()
where 8= 1/kgT, kg is the Boltzmann’s constant, and is =1

theT(r:]hemicaI potential._ d as foll In Sec. Ii . where the matrixT e SU,(N), the relations given in Eq$2)
€ paper IS organize€d as Tollows. In Sec. [l, We revViewy (3) are covariant. The SIN) transformation matrixr

the general properties of the g) fermions and specialize and theR matrix satisfy the following relationgl6]:
for N=2 case. In Sec. Ill, we introduce our model defined

by a SU,,(2)-invariant fermionic Hamiltonian. This leads to RT,T,=T,TR, (6)
the discussion of thermodynamics of the model obtained via
the grand partition function given in Sec. IV. For instance, R15R13R23=Ro3R 3R 2, (7)

we find the average number of particles and the pressure.

Therefore, the equation of state is derived as a virial exparwhere T;=T®1l, T,=1®TeVeV, and Ruij,ij«’
sion in order to determine the role of the deformation param= d;;'Rjy j. e VOV®V.

etersq andp on the system. In the last section, we give our It can be found from Eq(6) through a unitary quantum
conclusions. group matrix[17]
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a b covered in the limitp=1 as defined by Eq49)—(13). It is
T= c d’ obvious from Eqg. (19) that occupation numbers for
SUyp(2)-fermionic states are restricted to=0,1.
that
. SU ¢,(2)-FERMION MODEL
ab=qgba, ac=qca, ) ) ) . )
In this section, we wish to find a representationbf
cd=qdc, bd=qdb, operators in terms of usual fermion operatgts To achieve
this aim, we begin by considering the following Hamiltonian
bc=cbh, ad—da=(g—q Ybc, (8) in terms of SUY,,(2) generators for two different kinds of
fermions with the same energy,
Dety(T)=ad—qbc=1.
RequiringT to be unitary leads to the adjoint matﬁgiven He= zk: ex(Magxt+May), (20)
by
B ( d —q‘lb) where the operator®l,, and M, are defined by
—qc a M=V Wik, Moo=V Vo, (21)
with geR. In particular, for N=2, the simplest is the spectrum of energyk=0,12..., and

SU,(2)-covariant algebra generated by the quantum grou?‘? W =0, for k#K’. The operatordl, and M, sat-
|, y ]’ ! - y .

fermionsW¥,, i=1,2, is given by the following relations: isfy the following relations for a givek:
VW=, ©) M,¥,—q 2¥;M,=0,
VW, + VoW, =1+ (g~ 1) W ¥y, (10) M, ¥,—p 2¥,M;=0. (22
W Wo=—q¥,¥y, (1) The normalized states of the above Hamiltonian can be built
\If1@2= —qaz‘l’l, 12 gxlgﬁﬁlyggg the operatord on the vacuum stat@, 0) for a
W1, W} =0={W2, W3}, (13 WIwT0,0, n,m=0,1. (23)

in which they become the usual fermion algebra in the limit

q:l However, we consider a different quantum group In order to express a new I’epresenta’[ion%ropera’tors
SU,-(2) fermions, wher&j=q/p. We should mention now in terms of usual fermion operatorg , and l/f|+k satisfying
that historically, the foundations of the two-parameter de-Egs.(1), we exploit the following representations for a given
formed quantum group invariant bosonic oscillator algebrag:

were based on Reffl8,19, whereas the two-parameter de- .

formed quantum group invariant fermionic oscillator algebra W, =4, (1+(p—1)N,), Y;=4; (1+(p—1)N,),

has recently been realizd@0]. The anticommutation rela- (29
tions generating the quantum group 02) fermions are
defined by Vo= o1+ (Q-1Np, W=y (1+(q— 1Ny,
. " (25
W+ W Wy =pTe (14

. . . By virtue of this representation, we rewrite the Hamiltonian
VLW, + p2W,W,=p?N2+ (g2 — 1) W, ¥, (15  in Eq. (20) as

— -1

Yol —ap "t 19 HF:; ex(Ny g+ Noy+ (92 +p>=2)NyNyy),  (26)

Y, W,=—pg WLV, 17
where N; = wsz,bi,k. When compared with the original

\Ifl\I_IZ: _qp\fzqfl, (18) Hamiltonian in Eq.(20), this representation leads to an inter-

acting Hamiltonian for the system containing two different

(W, ¥ =0={V,,¥,}, (19 kinds of fermionic particles. The thermodynamics of such a
system will be discussed in the next section.

where N, is the fermionic number operator angp e R. We should add that the representations given in E.

Hereafter, we will consider €< and 0<p<. How-  and(25) can be generalized for arbitralycase according to
ever, the usual quantum group @) fermions can be re- the following transformations:
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\If2=[1+<q—1>N1]w2|[[3 (1+(p—1)N)),

N which gives the following relation by calculating the inte-
Wi=ya]l @+ (p-DN), gral:
AmV [\ [2m)|3? 2m) 32
N |nZF=—h? 7(7) Z— \/;(F) 226’(q,p)

2m 3/2
N +m 7) 20 (a,p)+--e|, (33
W3=[1+(q=DNI[1+(q= NI [T (2+(p— DNy, _

I=4 (27 where the functiong’(q,p) and{’(q,p) are
' —E — ! (34

§a.p=y, 5 @™

N—1
‘I’mzlﬂl (1+(a—1)ND ¢, , 1] 4 3

¢ (q,p)=g 33 (At p)®| (35

and similarly for the adjoint equations.

One can calculate the average number of partiigsoy

IV. THERMODYNAMICS OF SU ,,(2)-FERMION GAS

Ip

1/dInZg
We now investigate the high temperatuitew density (N)= B ; (36)
behavior of the Si},(2)-fermion gas described by the v

Hamiltonian in Eq.(26). Let us consider the following grand

partition

Zg=Tr eXF{_ﬂE ek(al,kqll,k_l' az,kq’z,k)}eﬁ”(Nl'k+N2’k)a (N)y= h?
X

where the trace is taken over the states in(28). By using

which leads to

\/; m 3/2 m 3/2 ,
TG w2l ) eape

(28 (37

By reverting this equation, we can find the fugacity as

functionZg of the system:
47V

Eq. (26), this grand partition function becomes 1 h2 |\ ¥2(N) h2  \3((N))|2
11 Z”E(Mka) T’Lg(q’p)(zwka) (7)

Ze=I1 X X exd-Beni+n, (38)

k n;=0ny,=0

The pressure can also be calculated b
+(Q2+p2-2)nyny)]efu(ns e, 29) P d
1/dInZ¢
2, 2 =5 ) (39)
:H (1+ze—ﬁ(€k—P)+e—ﬁ(€k(q +p )_ZM))’ (30) B\ Vv T
K

which gives

for which one can recover the square of usual fermion-type

grand partition function in the limig=p=1. Since we are Az [Jm[2m)\3? 2m) 372 )
investigating the high temperature behavior of the model, P:@ > 7 z—\m 7 §'(q,p)z°+---|.
the limitz<1, in the three-dimensional momentum (40)

namely,

space, the grand partition function in E§0) can be rewrit-

ten as

By using the above equations, the equation of state is derived
as a virial expansion

47V (=
In sz—:3 f P2 In(1+ 26 Ale~w) 4 g~ Blela®+p?)~2u)) h? | 32(N)
0 — ’ - T ...
PY=KT(N) 1+ €@ o] s @
Xdp, (31
. ) . where the second virial coefficieBt,(q,p) is
which can be expanded in the first three terms as follows
h2 32
o 2 — ’
|nzF=4:3V 02 Ze,ﬁeﬁ%(Ze,ﬁe(qzwz)_%,zﬁé) Ba(q,p)=¢ (q,p)<2kaT) (42)
0 :

Since we are dealing with the high temperature limit, we are
particularly focusing our attention to this second virial coef-
ficient and omitting the other terms. Obviously, the sign of

3
z
+ 5(1&;3&_ 12~ Be@+@ Py 1 ... |dp, (32)
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FIG. 1. The coefficient’(q,p) for the interval 6<(g%+ p?)
<3. The line at ¢?+p?)=1.26 seperates the region between
£'(9,p)<0 and ¢’ (q,p)>0, which corresponds to bosonlike and
fermionic behavior, respectively.

FIG. 2. The coefficienty'(q,p) for the interval 6<(g%+ p?)
<3. The line at ¢®+p?=1.0 divides the region between
7'(q,p)<0 and %'(q,p)>0, which corresponds to bosonlike and
fermionic behavior, respectively.

the second virial coefficient depends on the values of th%\/hiCh clearly depends on the values of the function
deformation.parameteqsandp._ Therefore, these parameters "(q,p). As is anticipated from this equation, the sign of the
are responsible for the behavior of the present two-paramet qeco’nd virial coefficient changes depending,on the values of
fermion gas model. Figure 1 shows a graph of the coefficien

f ) e parameterg andp. Indeed, this remarkable point is es-
gn(gég) as a function of the sum of the model parametgts sential difference between the present two-parameter de-

We now di me important limitin fth formed fermionic gas model and the earlier one-parameter
€ now discuss some importa g cases ot IN€ SeCytqrmed fermionic gas modgs]. At this point, we need to
ond virial coefficientB,(q,p) by means of the function

£(q.p) given in Eq.(34). The function¢’ (g, p) vanishes at add some remarks related to the second virial coefficient

. B,(qg,p) by virtue of the function’(q,p) for the two-

2 2\ 2

(9°+p*)~1.26, an(_j,_ therefqr(_a, leads tq an ideal gas resuII:IimensionaI system. Figure 2 shows a graph of the coeffi-
(up to the second virial coefficientin the limitq=p=1, the

coefficient¢’ (1,1)=2""2 which describes a numerical fac- cient 7 (q,p) as a function of a sum of the model param-

. - o . -~ etersg? and p2. The function '(q,p) vanishes at ¢
torin the seconq virial coeff|c.|en't fora f'ree fermion gas \.N'th +p?)=1.0, and, therefore, corresponds to an ideal gase case
two different kinds of fermionic particles. The function

£(q.p) gets its highest value in the limij or p—e as (up to the second virial coefficientThe free fermion gas

, result 5’ (q,p) =22 with two different kinds of fermionic
f/(q,p)fjo.ég.ml—!oweverr], ;het fzrie zbfzog 6 gas casH] particles can be recovered in the limit p=1. The function
‘ (g,np%h_e other hlznrgaﬁ i: in?eﬁ(estigg);) iﬁvéstigate Whethern,(q’p) gets its highest value in the fimg or p— as
a similar behavior co’uld be found for the two-dimensional”,(q'P):OZZ.S' In t_he_two-dimensional system, ano_ther in-

tem by performing the same calculations. If one foIIOWSterestlng critical point is ato?+ p?)~0.67 corresponding to
system by p ) ) '(q,p)=—2"2 such that this model behaves as a boson

the same procedure as above, then the equation of state ngs with two species in that values of the parametesdp

be found as [21]
h2 (N) We wish to close this section by particularly discussing
PA=KT(N)| 1+ n’(q,p)(zwka)T -++|, (43)  the third virial coefficientBs(qg,p) for the two-dimensional

system. Starting with Eq33), one can continue to calculate
whereA is the surface confining the fermionic system andone-step further, all the procedure discussed above, and then

the function’(q,p) is the third virial coefficientB5(q,p) in Eq. (43) becomes
! ! Bs(q,p) =&’ "’ )2 46
n (q,p)=z[1—m (44) S(Q1p)_ (q,p) 2omkT] ( )
The second virial coefficierB,(q,p) in Eq. (43) becomes  where the functions’(q,p) is
B =7 h* 45 o' —1 4 ! 4
2a,p)=7"(a,p)| 5 ——1 7| (45 (a.p)=3lg arq? )| (47)
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Although it seems to be of minor importance in the highonic behaviors. Also, in three dimensions, we may remark
temperature limit, when compared to the second virial coefthat the Si,,(2)-fermion model exhibits an interpolation
ficient B,(q,p) in Eq. (45), according to our point of view it between attractivef (q%+ p?)<1.26] and repulsive[(qg?
would be significant to determine this third virial coefficient + p2)>1.26] systems.

Bs(q,p) in the two-parameter deformed fermion as well as  The quantum group Sl4(2)-fermion model in two spa-
boson models for both theoretical and experimental applicaga| dimensions has a crucial behavior through the parameters

tions related to this field of research. g andp: This model exhibits an interpolation between attrac-
tive [ (g%+ p?)<1.0] and repulsivg (g*+ p?)>1.0] systems
V. CONCLUSIONS including the free boson and fermion cases as shown in Fig-

In this paper, we studied the behavior of a two-parametelré 2. We have shown that this simple }02)-fermionic
deformed quantum group fermionic gas i¢2) at high system d(_asc_nbes such_klnds_ of different systems _spanned
temperatures. Starting with a $4(2)-invariant fermionic from fermionic to bosonic regions. Such a result indicates a
Hamiltonian, we calculated various thermodynamical func-Similar physical behavior as seen in anyonic systg2as23,
tions via the grand partition function of the system, and conWhereas it is impossible to find such a behavior in the case of
sequently the equation of state is obtained as a virial exparthe one-parameter deformed quantum group fermionic gas in
sion in the two- and three-dimensional space. Obviously, théwo dimensiong8,9], which correspond to the limpg=1 in
free fermion gas results for a system containing two differenthe present model, except a difference point originating from
kinds of fermionic particles can be found in the lingjtp g andq~?! factors between the two S(R)-covariant oscil-
=1. lator algebragEq. (15)].

We found that the sign of the second virial coefficient The low temperature behavior of the present two-
B,(q,p) depends on the parameteysindp in both two and  parameter S|J,(2)-fermion model and generalization for
three spatial dimensions. As shown in Fig. 1, the deformatiomigher N fields will be the subject of another study that,
parameters| andp interpolate between bosonlike and fermi- hopefully, would give some new results.
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